EconPapers    
Economics at your fingertips  
 

Soft maximin estimation for heterogeneous data

Adam Lund, Søren Wengel Mogensen and Niels Richard Hansen

Scandinavian Journal of Statistics, 2022, vol. 49, issue 4, 1761-1790

Abstract: Extracting a common robust signal from data divided into heterogeneous groups is challenging when each group—in addition to the signal—contains large, unique variation components. Previously, maximin estimation was proposed as a robust method in the presence of heterogeneous noise. We propose soft maximin estimation as a computationally attractive alternative aimed at striking a balance between pooled estimation and (hard) maximin estimation. The soft maximin method provides a range of estimators, controlled by a parameter ζ>0$$ \zeta >0 $$, that interpolates pooled least squares estimation and maximin estimation. By establishing relevant theoretical properties we argue that the soft maximin method is statistically sensible and computationally attractive. We demonstrate, on real and simulated data, that soft maximin estimation can offer improvements over both pooled OLS and hard maximin in terms of predictive performance and computational complexity. A time and memory efficient implementation is provided in the R package SMME available on CRAN.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/sjos.12580

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:49:y:2022:i:4:p:1761-1790

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:49:y:2022:i:4:p:1761-1790