Dimension‐independent Markov chain Monte Carlo on the sphere
Han Cheng Lie,
Daniel Rudolf,
Björn Sprungk and
T. J. Sullivan
Scandinavian Journal of Statistics, 2023, vol. 50, issue 4, 1818-1858
Abstract:
We consider Bayesian analysis on high‐dimensional spheres with angular central Gaussian priors. These priors model antipodally symmetric directional data, are easily defined in Hilbert spaces and occur, for instance, in Bayesian density estimation and binary level set inversion. In this paper we derive efficient Markov chain Monte Carlo methods for approximate sampling of posteriors with respect to these priors. Our approaches rely on lifting the sampling problem to the ambient Hilbert space and exploit existing dimension‐independent samplers in linear spaces. By a push‐forward Markov kernel construction we then obtain Markov chains on the sphere which inherit reversibility and spectral gap properties from samplers in linear spaces. Moreover, our proposed algorithms show dimension‐independent efficiency in numerical experiments.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12653
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:50:y:2023:i:4:p:1818-1858
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().