Gradient‐based approach to sufficient dimension reduction with functional or longitudinal covariates
Ming‐Yueh Huang and
Kwun Chuen Gary Chan
Scandinavian Journal of Statistics, 2024, vol. 51, issue 4, 1567-1586
Abstract:
In this paper, we focus on the sufficient dimension reduction problem in regression analysis with real‐valued response and functional or longitudinal covariates. We propose a new method based on gradients of the conditional distribution function to estimate the sufficient dimension reduction subspace. While existing inverse‐regression‐type methods relies on a linearity condition, our method is based on the gradient of conditional distribution function and its validity only requires smoothness conditions on the population parameters. Practically, the proposed estimator can be obtained by standard algorithm of functional principal component analysis. The proposed method is demonstrated through extensive simulations and two empirical examples.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12724
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:51:y:2024:i:4:p:1567-1586
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().