A two–stage approach to additive time series models
Zongwu Cai ()
Statistica Neerlandica, 2002, vol. 56, issue 4, 415-433
Abstract:
For nonlinear additive time series models, an appealing approach used in the literature to estimate the nonparametric additive components is the projection method. In this paper, it is demonstrated that the projection method might not be efficient in an asymptotic sense. To estimate additive components efficiently, a two–stage approach is proposed together with a local linear fitting and a new bandwidth selector based on the nonparametric version of the Akaike information criterion. It is shown that the two–stage method not only achieves efficiency but also makes bandwidth selection relatively easier. Also, the asymptotic normality of the resulting estimator is established. A small simulation study is carried out to illustrate the proposed methodology and the two–stage approach is applied to a real example from econometrics.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
https://doi.org/10.1111/1467-9574.00210
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:56:y:2002:i:4:p:415-433
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().