Bayesian model selection using encompassing priors
Irene Klugkist,
Bernet Kato and
Herbert Hoijtink
Statistica Neerlandica, 2005, vol. 59, issue 1, 57-69
Abstract:
This paper deals with Bayesian selection of models that can be specified using inequality constraints among the model parameters. The concept of encompassing priors is introduced, that is, a prior distribution for an unconstrained model from which the prior distributions of the constrained models can be derived. It is shown that the Bayes factor for the encompassing and a constrained model has a very nice interpretation: it is the ratio of the proportion of the prior and posterior distribution of the encompassing model in agreement with the constrained model. It is also shown that, for a specific class of models, selection based on encompassing priors will render a virtually objective selection procedure. The paper concludes with three illustrative examples: an analysis of variance with ordered means; a contingency table analysis with ordered odds‐ratios; and a multilevel model with ordered slopes.
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9574.2005.00279.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:59:y:2005:i:1:p:57-69
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().