Intensity estimation for inhomogeneous Gibbs point process with covariates-dependent chemical activity
Ondřej Šedivý and
Antti Penttinen
Statistica Neerlandica, 2014, vol. 68, issue 3, 225-249
Abstract:
type="main" xml:id="stan12030-abs-0001"> Recent development of intensity estimation for inhomogeneous spatial point processes with covariates suggests that kerneling in the covariate space is a competitive intensity estimation method for inhomogeneous Poisson processes. It is not known whether this advantageous performance is still valid when the points interact. In the simplest common case, this happens, for example, when the objects presented as points have a spatial dimension. In this paper, kerneling in the covariate space is extended to Gibbs processes with covariates-dependent chemical activity and inhibitive interactions, and the performance of the approach is studied through extensive simulation experiments. It is demonstrated that under mild assumptions on the dependence of the intensity on covariates, this approach can provide better results than the classical nonparametric method based on local smoothing in the spatial domain. In comparison with the parametric pseudo-likelihood estimation, the nonparametric approach can be more accurate particularly when the dependence on covariates is weak or if there is uncertainty about the model or about the range of interactions. An important supplementary task is the dimension reduction of the covariate space. It is shown that the techniques based on the inverse regression, previously applied to Cox processes, are useful even when the interactions are present. © 2014 The Authors. Statistica Neerlandica © 2014 VVS.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1111/stan.12030 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:68:y:2014:i:3:p:225-249
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().