Testing block-diagonal covariance structure for high-dimensional data
Masashi Hyodo,
Nobumichi Shutoh,
Takahiro Nishiyama and
Tatjana Pavlenko
Statistica Neerlandica, 2015, vol. 69, issue 4, 460-482
Abstract:
type="main" xml:id="stan12068-abs-0001"> A test statistic is developed for making inference about a block-diagonal structure of the covariance matrix when the dimensionality p exceeds n, where n = N − 1 and N denotes the sample size. The suggested procedure extends the complete independence results. Because the classical hypothesis testing methods based on the likelihood ratio degenerate when p > n, the main idea is to turn instead to a distance function between the null and alternative hypotheses. The test statistic is then constructed using a consistent estimator of this function, where consistency is considered in an asymptotic framework that allows p to grow together with n. The suggested statistic is also shown to have an asymptotic normality under the null hypothesis. Some auxiliary results on the moments of products of multivariate normal random vectors and higher-order moments of the Wishart matrices, which are important for our evaluation of the test statistic, are derived. We perform empirical power analysis for a number of alternative covariance structures.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1111/stan.12068 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:69:y:2015:i:4:p:460-482
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().