EconPapers    
Economics at your fingertips  
 

PCA‐based discrimination of partially observed functional data, with an application to AneuRisk65 data set

Marco Stefanucci, Laura M. Sangalli and Pierpaolo Brutti

Statistica Neerlandica, 2018, vol. 72, issue 3, 246-264

Abstract: Functional data are usually assumed to be observed on a common domain. However, it is often the case that some portion of the functional data is missing for some statistical unit, invalidating most of the existing techniques for functional data analysis. The development of methods able to handle partially observed or incomplete functional data is currently attracting increasing interest. We here briefly review this literature. We then focus on discrimination based on principal component analysis and illustrate a few possible methods via simulation studies and an application to the AneuRisk65 data set. We show that carrying out the analysis over the full domain, where at least one of the functional data is observed, may not be the optimal choice for classification purposes.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1111/stan.12137

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:72:y:2018:i:3:p:246-264

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402

Access Statistics for this article

Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven

More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-31
Handle: RePEc:bla:stanee:v:72:y:2018:i:3:p:246-264