EconPapers    
Economics at your fingertips  
 

Selection of influential variables in ordinal data with preponderance of zeros

Ujjwal Das and Kalyan Das

Statistica Neerlandica, 2021, vol. 75, issue 1, 66-87

Abstract: Presence of excess zero in ordinal data is pervasive in areas like medical and social sciences. Unfortunately, analysis of such kind of data has so far hardly been looked into, perhaps for the reason that the underlying model that fits such data, is not a generalized linear model. Obviously some methodological developments and intensive computations are required. The current investigation is concerned with the selection of variables in such models. In many occasions where the number of predictors is quite large and some of them are not useful, the maximum likelihood approach is not the automatic choice. As, apart from the messy calculations involved, this approach fails to provide efficient estimates of the underlying parameters. The proposed penalized approach includes ℓ1 penalty (LASSO) and the mixture of ℓ1 and ℓ2 penalties (elastic net). We propose a coordinate descent algorithm to fit a wide class of ordinal regression models and select useful variables appearing in both the ordinal regression and the logistic regression based mixing component. A rigorous discussion on the selection of predictors has been made through a simulation study. The proposed method is illustrated by analyzing the severity of driver injury from Michigan upper peninsula road accidents.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/stan.12225

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:75:y:2021:i:1:p:66-87

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402

Access Statistics for this article

Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven

More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:stanee:v:75:y:2021:i:1:p:66-87