EconPapers    
Economics at your fingertips  
 

Analysis of progressive Type‐II censoring in presence of competing risk data under step stress modeling

Arnab Koley and Debasis Kundu

Statistica Neerlandica, 2021, vol. 75, issue 2, 115-136

Abstract: In this article we consider the analysis of progressively censored competing risks data obtained from a simple step‐stress experiment. It is assumed that there are only two competing causes of failures at each stress level and the lifetime distribution of each one of them is one parameter exponential distribution. Based on the cumulative exposure model assumption, the conditional maximum likelihood estimators (MLEs) of the unknown parameters can be obtained in explicit forms. Confidence intervals of the unknown parameters based on the exact distributions of the conditional MLEs and percentile bootstrap method, are constructed. Further we obtain Bayes estimates and the associated credible intervals based on a very flexible Beta‐gamma prior on the unknown parameters. A simulation experiment has been performed to observe the performances of the different estimators.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/stan.12226

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:75:y:2021:i:2:p:115-136

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402

Access Statistics for this article

Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven

More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:stanee:v:75:y:2021:i:2:p:115-136