The basic distributional theory for the product of zero mean correlated normal random variables
Robert E. Gaunt
Statistica Neerlandica, 2022, vol. 76, issue 4, 450-470
Abstract:
The product of two zero mean correlated normal random variables, and more generally the sum of independent copies of such random variables, has received much attention in the statistics literature and appears in many application areas. However, many important distributional properties are yet to be recorded. This review paper fills this gap by providing the basic distributional theory for the sum of independent copies of the product of two zero mean correlated normal random variables. Properties covered include probability and cumulative distribution functions, generating functions, moments and cumulants, mode and median, Stein characterisations, representations in terms of other random variables, and a list of related distributions. We also review how the product of two zero mean correlated normal random variables arises naturally as a limiting distribution, with an example given for the distributional approximation of double Wiener‐Itô integrals.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/stan.12267
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:76:y:2022:i:4:p:450-470
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().