Testing conditional independence in casual inference for time series data
Zongwu Cai,
Ying Fang,
Ming Lin and
Shengfang Tang
Statistica Neerlandica, 2024, vol. 78, issue 2, 397-426
Abstract:
In this paper, we propose a new procedure to test conditional independence assumption in studying casual inference for time series data. The conditional independence assumption is transformed to a nonparametric conditional moment test with the help of auxiliary variables which are allowed to affect policy choice but the dependence can be fully captured by potential outcomes and observable controls. When the policy choice is binary, a nonparametric statistic test is developed further for testing the conditional independence assumption conditional on policy propensity score. Under some regular conditions, we show that the proposed test statistics are asymptotically normal under the null hypotheses for time series data. In addition, the performances of the proposed methods are illustrated through Monte Carlo simulations and a real example considered in Angrist and Kuersteiner (2011).
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/stan.12323
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:78:y:2024:i:2:p:397-426
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().