EconPapers    
Economics at your fingertips  
 

Life cycle assessment of hydrogen production, storage, and utilization toward sustainability

Ahmed I. Osman, Mahmoud Nasr, A. R. Mohamed, Amal Abdelhaleem, Ali Ayati, Mohamed Farghali, Ala'a H. Al‐Muhtaseb, Ahmed S. Al‐Fatesh and David W. Rooney

Wiley Interdisciplinary Reviews: Energy and Environment, 2024, vol. 13, issue 3

Abstract: In the pursuit of sustainable energy solutions, hydrogen emerges as a promising candidate for decarbonization. The United States has the potential to sell wind energy at a record‐low price of 2.5 cents/kWh, making hydrogen production electricity up to four times cheaper than natural gas. Hydrogen's appeal stems from its highly exothermic reaction with oxygen, producing only water as a byproduct. With an energy content equivalent to 2.4 kg of methane or 2.8 kg of gasoline per kilogram, hydrogen boasts a superior energy‐to‐weight ratio compared to fossil fuels. However, its energy‐to‐volume ratio, exemplified by liquid hydrogen's 8.5 MJ.L−1 versus gasoline's 32.6 MJ.L−1, presents a challenge, requiring a larger volume for equivalent energy. In addition, this review employs life cycle assessment (LCA) to evaluate hydrogen's full life cycle, including production, storage, and utilization. Through an examination of LCA methodologies and principles, the review underscores its importance in measuring hydrogen's environmental sustainability and energy consumption. Key findings reveal diverse hydrogen production pathways, such as blue, green, and purple hydrogen, offering a nuanced understanding of their life cycle inventories. The impact assessment of hydrogen production is explored, supported by case studies illustrating environmental implications. Comparative LCA analysis across different pathways provides crucial insights for decision‐making, shaping environmental and sustainability considerations. Ultimately, the review emphasizes LCA's pivotal role in guiding the hydrogen economy toward a low‐carbon future, positioning hydrogen as a versatile energy carrier with significant potential. This article is categorized under: Emerging Technologies > Hydrogen and Fuel Cells

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/wene.526

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:wireae:v:13:y:2024:i:3:n:e526

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2041-8396

Access Statistics for this article

Wiley Interdisciplinary Reviews: Energy and Environment is currently edited by Peter Lund and John Byrne

More articles in Wiley Interdisciplinary Reviews: Energy and Environment from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:wireae:v:13:y:2024:i:3:n:e526