Salvage harvesting for bioenergy in Canada: From sustainable and integrated supply chain to climate change mitigation
Nicolas Mansuy,
Julie Barrette,
Jérôme Laganière,
Warren Mabee,
David Paré,
Shuva Gautam,
Evelyne Thiffault and
Saeed Ghafghazi
Wiley Interdisciplinary Reviews: Energy and Environment, 2018, vol. 7, issue 5
Abstract:
Driven by the policy imperatives of mitigating greenhouse gas (GHG) emissions and improving energy security, an increasing proportion of global energy demand is being met by nonfossil energy sources. The socioeconomic and environmental benefits of replacing fossil fuels with bioenergy are complex; however, debate continues about issues such as best practices for biomass removal, stable supply chains, and GHG mitigation. With the greatest biomass per capita in the world, Canada could play an increasing role in the future of global bioenergy and the emerging bioeconomy. This paper reviews the utilization of feedstock salvaged after natural disturbances (fire and insect outbreaks) to supply wood‐based bioenergy, by addressing the following multidisciplinary questions: (1) How much salvaged feedstock is available, and what are the uncertainties around these estimates? (2) How can sustainable practices to support increased removal of biomass be implemented? (3) What are the constraints on development of an integrated supply chain and cost‐effective mobilization of the biomass? (4) Is the quality of biomass from salvaged trees suitable for conversion to bioenergy? (5) What is the potential for climate change mitigation? In average, salvaged feedstock from fire and insects could theoretically provide about 100 × 106 oven Dry ton (ODT) biomass per year, with high variability over time and space. Existing policies and guidelines for harvesting of woody biomass in Canadian jurisdictions could support sustainable biomass removal. However, uncertainties remain as to the development of competitive and profitable supply chains, because of the large distances between the locations of this feedstock and available processing sites. Another uncertainty lies in the time needed for a benefit in climate change mitigation to occur. A flexible supply chain, integrated with other sources of biomass residues, is needed to develop a cost‐efficient bioenergy sector. This article is categorized under: Bioenergy > Climate and Environment
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1002/wene.298
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:wireae:v:7:y:2018:i:5:n:e298
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2041-8396
Access Statistics for this article
Wiley Interdisciplinary Reviews: Energy and Environment is currently edited by Peter Lund and John Byrne
More articles in Wiley Interdisciplinary Reviews: Energy and Environment from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().