EconPapers    
Economics at your fingertips  
 

Hunting for the missing score functions

Álvaro A. Gutiérrez-Vargas
Additional contact information
Álvaro A. Gutiérrez-Vargas: Research Centre for Operations Research and Statistics, KU Leuven

2021 Stata Conference from Stata Users Group

Abstract: Specific econometric models—such as the Cox regression, conditional logistic regression, and panel-data models—have likelihood functions that do not meet the so-called linear-form requirement. That means that the model's overall log-likelihood function does not correspond to the sum of each observation's log-likelihood contribution. Stata's ml command can fit said models using a particular group of evaluators: the d-family evaluators. Unfortunately, they have some limitations; one is that we cannot directly produce the score functions from the postestimation command predict. This missing feature triggers the need for tailored computational routines from developers that might need those functions to compute, for example, robust variance–covariance matrices. In this talk, I present a way to compute the score functions numerically using Mata's deriv() function with minimum extra programming other than the log-likelihood function. The procedure is exemplified by replicating the robust variance–covariance matrix produced by the clogit command using simulated data. The results show negligible numerical differences (e-09) between the clogit robust variance–covariance matrix and the numerically approximated one using Mata's deriv() function.

Date: 2021-08-07
New Economics Papers: this item is included in nep-isf
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://fmwww.bc.edu/repec/scon2021/US21_Gutierrez-Vargas.pdf

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:boc:scon21:20

Access Statistics for this paper

More papers in 2021 Stata Conference from Stata Users Group Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F Baum ().

 
Page updated 2025-03-19
Handle: RePEc:boc:scon21:20