EconPapers    
Economics at your fingertips  
 

The Mechanics of Omitted Variable Bias: Bias Amplification and Cancellation of Offsetting Biases

Steiner Peter M. () and Kim Yongnam
Additional contact information
Steiner Peter M.: Department of Educational Psychology, University of Wisconsin, Madison, WI, USA
Kim Yongnam: Department of Educational Psychology, University of Wisconsin, Madison, WI, USA

Journal of Causal Inference, 2016, vol. 4, issue 2, 22

Abstract: Causal inference with observational data frequently requires researchers to estimate treatment effects conditional on a set of observed covariates, hoping that they remove or at least reduce the confounding bias. Using a simple linear (regression) setting with two confounders – one observed (X), the other unobserved (U) – we demonstrate that conditioning on the observed confounder X does not necessarily imply that the confounding bias decreases, even if X is highly correlated with U. That is, adjusting for X may increase instead of reduce the omitted variable bias (OVB). Two phenomena can cause an increasing OVB: (i) bias amplification and (ii) cancellation of offsetting biases. Bias amplification occurs because conditioning on X amplifies any remaining bias due to the omitted confounder U. Cancellation of offsetting biases is an issue whenever X and U induce biases in opposite directions such that they perfectly or partially offset each other, in which case adjusting for X inadvertently cancels the bias-offsetting effect. In this article we discuss the conditions under which adjusting for X increases OVB, and demonstrate that conditioning on X increases the imbalance in U, which turns U into an even stronger confounder. We also show that conditioning on an unreliably measured confounder can remove more bias than the corresponding reliable measure. Practical implications for causal inference will be discussed.

Keywords: Omitted variable bias; bias amplification; measurement error; causal inference; offsetting bias (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1515/jci-2016-0009 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:causin:v:4:y:2016:i:2:p:22:n:2

DOI: 10.1515/jci-2016-0009

Access Statistics for this article

Journal of Causal Inference is currently edited by Elias Bareinboim, Jin Tian and Iván Díaz

More articles in Journal of Causal Inference from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:causin:v:4:y:2016:i:2:p:22:n:2