EconPapers    
Economics at your fingertips  
 

Two seemingly paradoxical results in linear models: the variance inflation factor and the analysis of covariance

Ding Peng ()
Additional contact information
Ding Peng: Department of Statistics, University of California, Berkeley, CA 94720, United States of America

Journal of Causal Inference, 2021, vol. 9, issue 1, 1-8

Abstract: A result from a standard linear model course is that the variance of the ordinary least squares (OLS) coefficient of a variable will never decrease when including additional covariates into the regression. The variance inflation factor (VIF) measures the increase of the variance. Another result from a standard linear model or experimental design course is that including additional covariates in a linear model of the outcome on the treatment indicator will never increase the variance of the OLS coefficient of the treatment at least asymptotically. This technique is called the analysis of covariance (ANCOVA), which is often used to improve the efficiency of treatment effect estimation. So we have two paradoxical results: adding covariates never decreases the variance in the first result but never increases the variance in the second result. In fact, these two results are derived under different assumptions. More precisely, the VIF result conditions on the treatment indicators but the ANCOVA result averages over them. Comparing the estimators with and without adjusting for additional covariates in a completely randomized experiment, I show that the former has smaller variance averaging over the treatment indicators, and the latter has smaller variance at the cost of a larger bias conditioning on the treatment indicators. Therefore, there is no real paradox.

Keywords: Causal inference; Conditioning; Design-based inference; Potential outcomes; Randomization; Rerandomization (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/jci-2019-0023 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:causin:v:9:y:2021:i:1:p:1-8:n:1

DOI: 10.1515/jci-2019-0023

Access Statistics for this article

Journal of Causal Inference is currently edited by Elias Bareinboim, Jin Tian and Iván Díaz

More articles in Journal of Causal Inference from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:causin:v:9:y:2021:i:1:p:1-8:n:1