EconPapers    
Economics at your fingertips  
 

Targeted Maximum Likelihood Learning

J. van der Laan Mark and Rubin Daniel
Additional contact information
J. van der Laan Mark: Division of Biostatistics, School of Public Health, University of California, Berkeley
Rubin Daniel: University of California, Berkeley

The International Journal of Biostatistics, 2006, vol. 2, issue 1, 40

Abstract: Suppose one observes a sample of independent and identically distributed observations from a particular data generating distribution. Suppose that one is concerned with estimation of a particular pathwise differentiable Euclidean parameter. A substitution estimator evaluating the parameter of a given likelihood based density estimator is typically too biased and might not even converge at the parametric rate: that is, the density estimator was targeted to be a good estimator of the density and might therefore result in a poor estimator of a particular smooth functional of the density. In this article we propose a one step (and, by iteration, k-th step) targeted maximum likelihood density estimator which involves 1) creating a hardest parametric submodel with parameter epsilon through the given density estimator with score equal to the efficient influence curve of the pathwise differentiable parameter at the density estimator, 2) estimating epsilon with the maximum likelihood estimator, and 3) defining a new density estimator as the corresponding update of the original density estimator. We show that iteration of this algorithm results in a targeted maximum likelihood density estimator which solves the efficient influence curve estimating equation and thereby yields a locally efficient estimator of the parameter of interest, under regularity conditions. In particular, we show that, if the parameter is linear and the model is convex, then the targeted maximum likelihood estimator is often achieved in the first step, and it results in a locally efficient estimator at an arbitrary (e.g., heavily misspecified) starting density.We also show that the targeted maximum likelihood estimators are now in full agreement with the locally efficient estimating function methodology as presented in Robins and Rotnitzky (1992) and van der Laan and Robins (2003), creating, in particular, algebraic equivalence between the double robust locally efficient estimators using the targeted maximum likelihood estimators as an estimate of its nuisance parameters, and targeted maximum likelihood estimators. In addition, it is argued that the targeted MLE has various advantages relative to the current estimating function based approach. We proceed by providing data driven methodologies to select the initial density estimator for the targeted MLE, thereby providing data adaptive targeted maximum likelihood estimation methodology. We illustrate the method with various worked out examples.

Keywords: causal effect; cross-validation; efficient influence curve; estimating function; locally efficient estimation; loss function; maximum likelihood estimation; sieve; targeted maximum likelihood estimation; variable importance (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (125)

Downloads: (external link)
https://doi.org/10.2202/1557-4679.1043 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:ijbist:v:2:y:2006:i:1:n:11

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/ijb/html

DOI: 10.2202/1557-4679.1043

Access Statistics for this article

The International Journal of Biostatistics is currently edited by Antoine Chambaz, Alan E. Hubbard and Mark J. van der Laan

More articles in The International Journal of Biostatistics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:ijbist:v:2:y:2006:i:1:n:11