EconPapers    
Economics at your fingertips  
 

Simple, Efficient Estimators of Treatment Effects in Randomized Trials Using Generalized Linear Models to Leverage Baseline Variables

Rosenblum Michael and J. van der Laan Mark
Additional contact information
Rosenblum Michael: Johns Hopkins University
J. van der Laan Mark: University of California, Berkeley

The International Journal of Biostatistics, 2010, vol. 6, issue 1, 44

Abstract: Models, such as logistic regression and Poisson regression models, are often used to estimate treatment effects in randomized trials. These models leverage information in variables collected before randomization, in order to obtain more precise estimates of treatment effects. However, there is the danger that model misspecification will lead to bias. We show that certain easy to compute, model-based estimators are asymptotically unbiased even when the working model used is arbitrarily misspecified. Furthermore, these estimators are locally efficient. As a special case of our main result, we consider a simple Poisson working model containing only main terms; in this case, we prove the maximum likelihood estimate of the coefficient corresponding to the treatment variable is an asymptotically unbiased estimator of the marginal log rate ratio, even when the working model is arbitrarily misspecified. This is the log-linear analog of ANCOVA for linear models. Our results demonstrate one application of targeted maximum likelihood estimation.

Keywords: misspecified model; targeted maximum likelihood; generalized linear model; Poisson regression (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://doi.org/10.2202/1557-4679.1138 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:ijbist:v:6:y:2010:i:1:n:13

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/ijb/html

DOI: 10.2202/1557-4679.1138

Access Statistics for this article

The International Journal of Biostatistics is currently edited by Antoine Chambaz, Alan E. Hubbard and Mark J. van der Laan

More articles in The International Journal of Biostatistics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:ijbist:v:6:y:2010:i:1:n:13