EconPapers    
Economics at your fingertips  
 

Ridge Regression for Longitudinal Biomarker Data

Eliot Melissa, Ferguson Jane, Reilly Muredach P. and Foulkes Andrea S.

The International Journal of Biostatistics, 2011, vol. 7, issue 1, 1-11

Abstract: Technological advances facilitating the acquisition of large arrays of biomarker data have led to new opportunities to understand and characterize disease progression over time. This creates an analytical challenge, however, due to the large numbers of potentially informative markers, the high degrees of correlation among them, and the time-dependent trajectories of association. We propose a mixed ridge estimator, which integrates ridge regression into the mixed effects modeling framework in order to account for both the correlation induced by repeatedly measuring an outcome on each individual over time, as well as the potentially high degree of correlation among possible predictor variables. An expectation-maximization algorithm is described to account for unknown variance and covariance parameters. Model performance is demonstrated through a simulation study and an application of the mixed ridge approach to data arising from a study of cardiometabolic biomarker responses to evoked inflammation induced by experimental low-dose endotoxemia.

Keywords: biomarkers; cardiovascular disease (CVD); mixed effects; repeated measures; ridge regression (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://doi.org/10.2202/1557-4679.1353 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:ijbist:v:7:y:2011:i:1:n:37

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/ijb/html

DOI: 10.2202/1557-4679.1353

Access Statistics for this article

The International Journal of Biostatistics is currently edited by Antoine Chambaz, Alan E. Hubbard and Mark J. van der Laan

More articles in The International Journal of Biostatistics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:ijbist:v:7:y:2011:i:1:n:37