A Tutorial on Methods to Estimating Clinically and Policy-Meaningful Measures of Treatment Effects in Prospective Observational Studies: A Review
Austin Peter C and
Laupacis Andreas
The International Journal of Biostatistics, 2011, vol. 7, issue 1, 1-32
Abstract:
In randomized controlled trials (RCTs), treatment assignment is unconfounded with baseline covariates, allowing outcomes to be directly compared between treatment arms. When outcomes are binary, the effect of treatment can be summarized using relative risks, absolute risk reductions and the number needed to treat (NNT). When outcomes are time-to-event in nature, the effect of treatment on the absolute reduction of the risk of an event occurring within a specified duration of follow-up and the associated NNT can be estimated. In observational studies of the effect of treatments on health outcomes, treatment is frequently confounded with baseline covariates. Regression adjustment is commonly used to estimate the adjusted effect of treatment on outcomes. We highlight several limitations of measures of treatment effect that are directly obtained from regression models. We illustrate how both regression-based approaches and propensity-score based approaches allow one to estimate the same measures of treatment effect as those that are commonly reported in RCTs. The CONSORT statement recommends that both relative and absolute measures of treatment effects be reported for RCTs with dichotomous outcomes. The methods described in this paper will allow for similar reporting in observational studies.
Keywords: randomized controlled trials; observational studies; causal effects; treatment effects; absolute risk reduction; relative risk reduction; number needed to treat; odds ratio; survival time; propensity score; propensity-score matching; regression; non-randomized studies; confounding (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.2202/1557-4679.1285 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:ijbist:v:7:y:2011:i:1:n:6
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/ijb/html
DOI: 10.2202/1557-4679.1285
Access Statistics for this article
The International Journal of Biostatistics is currently edited by Antoine Chambaz, Alan E. Hubbard and Mark J. van der Laan
More articles in The International Journal of Biostatistics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().