NFL Prediction using Committees of Artificial Neural Networks
David John A.,
Pasteur R. Drew,
Ahmad M. Saif and
Janning Michael C.
Additional contact information
David John A.: The College of Wooster
Pasteur R. Drew: The College of Wooster
Ahmad M. Saif: The College of Wooster
Janning Michael C.: The College of Wooster
Journal of Quantitative Analysis in Sports, 2011, vol. 7, issue 2, 15
Abstract:
This paper analyzes the ability of a neural network model to predict the outcome of NFL games. This model uses only readily available statistics, such as passing yards, rushing yards, fumbles lost, and scoring. A key component of this model is the use of statistical differentials to compare teams. For example, the offensive passing yards gained by one team are compared to the defensive passing yards allowed by an opposing team to create a data set of expected values for a given matchup. By using principal component analysis and derivative based analysis, we determined which statistics influence our model the most. We assessed the performance of the model by comparing its performance to that of published prediction algorithms and the Las Vegas oddsmakers over multiple seasons. Two novel aspects of this work include the use of multiple committees of machines for prediction and the use of our model to simulate virtual round-robin tournaments to establish an objective ranking of the teams.
Keywords: artificial neural networks; NFL; prediction (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.2202/1559-0410.1327 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:jqsprt:v:7:y:2011:i:2:n:9
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/jqas/html
DOI: 10.2202/1559-0410.1327
Access Statistics for this article
Journal of Quantitative Analysis in Sports is currently edited by Mark Glickman
More articles in Journal of Quantitative Analysis in Sports from De Gruyter
Bibliographic data for series maintained by Peter Golla ().