A Non-Homogeneous Dynamic Bayesian Network with Sequentially Coupled Interaction Parameters for Applications in Systems and Synthetic Biology
Grzegorczyk Marco and
Husmeier Dirk
Additional contact information
Grzegorczyk Marco: Department of Statistics, TU Dortmund University
Husmeier Dirk: School of Mathematics and Statistics, University of Glasgow, and Biomathematics and Statistics Scotland (BioSS), Edinburgh
Statistical Applications in Genetics and Molecular Biology, 2012, vol. 11, issue 4, 62
Abstract:
An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint processes to obtain time varying dynamic Bayesian networks (TV-DBNs). However, TV-DBNs are not without problems. Gene expression time series are typically short, which leaves the model over-flexible, leading to over-fitting or inflated inference uncertainty. In the present paper, we introduce a Bayesian regularization scheme that addresses this difficulty. Our approach is based on the rationale that changes in gene regulatory processes appear gradually during an organism's life cycle or in response to a changing environment, and we have integrated this notion in the prior distribution of the TV-DBN parameters. We have extensively tested our regularized TV-DBN model on synthetic data, in which we have simulated short non-homogeneous time series produced from a system subject to gradual change. We have then applied our method to real-world gene expression time series, measured during the life cycle of Drosophila melanogaster, under artificially generated constant light condition in Arabidopsis thaliana, and from a synthetically designed strain of Saccharomyces cerevisiae exposed to a changing environment.
Keywords: gene regulatory networks; non-stationary gene expression time series; time varying dynamic Bayesian networks; Bayesian regularization; Bayesian multiple changepoint processes; reversible jump Markov chain Monte Carlo (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://doi.org/10.1515/1544-6115.1761 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:11:y:2012:i:4:n:7
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.1515/1544-6115.1761
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().