Hierarchical Bayesian Neural Network for Gene Expression Temporal Patterns
Liang Yulan and
Kelemen Arpad G
Additional contact information
Liang Yulan: Department of Biostatistics, University at Buffalo
Kelemen Arpad G: Department of Computer and Information Science, Niagara University, Department of Biostatistics, University at Buffalo
Statistical Applications in Genetics and Molecular Biology, 2004, vol. 3, issue 1, 25
Abstract:
There are several important issues to be addressed for gene expression temporal patterns' analysis: first, the correlation structure of multidimensional temporal data; second, the numerous sources of variations with existing high level noise; and last, gene expression mostly involves heterogeneous multiple dynamic patterns. We propose a Hierarchical Bayesian Neural Network model to account for the input correlations of time course gene array data. The variations in absolute gene expression levels and the noise can be estimated with the hierarchical Bayesian setting. The network parameters and the hyperparameters were simultaneously optimized with Monte Carlo Markov Chain simulation. Results show that the proposed model and algorithm can well capture the dynamic feature of gene expression temporal patterns despite the high noise levels, the highly correlated inputs, the overwhelming interactions, and other complex features typically present in microarray data. We test and demonstrate the proposed models with yeast cell cycle temporal data sets. The model performance of Hierarchical Bayesian Neural Network was compared to other popular machine learning methods such as Nearest Neighbor, Support Vector Machine, and Self Organized Map.
Keywords: Hierarchical Bayesian Neural Networks; Heterogeneous gene expression temporal patterns; Hyper-prior; Monte Carlo Markov Chain. (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1038 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:3:y:2004:i:1:n:20
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1038
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().