Modeling DNA Methylation in a Population of Cancer Cells
Siegmund Kimberly D.,
Marjoram Paul and
Shibata Darryl
Additional contact information
Siegmund Kimberly D.: USC Keck School of Medicine, University of Southern California
Marjoram Paul: USC Keck School of Medicine, University of Southern California
Shibata Darryl: USC Keck School of Medicine, University of Southern California
Statistical Applications in Genetics and Molecular Biology, 2008, vol. 7, issue 1, 23
Abstract:
Little is known about how human cancers grow because direct observations are impractical. Cancers are clonal populations and the billions of cancer cells present in a visible tumor are progeny of a single transformed cell. Therefore, human cancers can be represented by somatic cell ancestral trees that start from a single transformed cell and end with billions of present day cancer cells. We use a genealogical approach to infer tumor growth from somatic trees, employing haplotype DNA methylation pattern variation, or differences between specific CpG sites or "tags," in the cancer genome. DNA methylation is an epigenetic mark that is copied, with error, during genome replication. At our tags, neutral copy errors in DNA methylation appear to occur at random, and much more frequently than sequence copy errors. To reconstruct a cancer tree, we sample and compare human colorectal genomes within small geographic regions (a cancer fragment), between fragments on the same side of the tumor, and between fragments from opposite tumor halves. The combined information on both physical distance and epigenetic distance informs our model for tumor ancestry. We use approximate Bayesian computation, a simulation-based method, to model tumor growth under a variety of evolutionary scenarios, estimating parameters that fit observed DNA methylation patterns. We conclude that methylation patterns sampled from human cancers are consistent with replication errors and certain simple cancer growth models. The inferred cancer trees are consistent with Gompertzian growth, a well-known cancer growth pattern.
Keywords: mathematical modeling; approximate Bayesian computation; Gompertzian growth (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1374 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:7:y:2008:i:1:n:18
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1374
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().