A Composite-Conditional-Likelihood Approach for Gene Mapping Based on Linkage Disequilibrium in Windows of Marker Loci
Larribe Fabrice and
Lessard Sabin
Additional contact information
Larribe Fabrice: Université du Québec à Montréal
Lessard Sabin: Université de Montréal
Statistical Applications in Genetics and Molecular Biology, 2008, vol. 7, issue 1, 33
Abstract:
A composite-conditional-likelihood (CCL) approach is proposed to map the position of a trait-influencing mutation (TIM) using the ancestral recombination graph (ARG) and importance sampling to reconstruct the genealogy of DNA sequences with respect to windows of marker loci and predict the linkage disequilibrium pattern observed in a sample of cases and controls. The method is designed to fine-map the location of a disease mutation, not as an association study. The CCL function proposed for the position of the TIM is a weighted product of conditional likelihood functions for windows of a given number of marker loci that encompass the TIM locus, given the sample configuration at the marker loci in those windows. A rare recessive allele is assumed for the TIM and single nucleotide polymorphisms (SNPs) are considered as markers. The method is applied to a range of simulated data sets. Not only do the CCL profiles converge more rapidly with smaller window sizes as the number of simulated histories of the sampled sequences increases, but the maximum-likelihood estimates for the position of the TIM remain as satisfactory, while requiring significantly less computing time. The simulations also suggest that non-random samples, more precisely, a non-proportional number of controls versus the number of cases, has little effect on the estimation procedure as well as sample size and marker density beyond some threshold values. Moreover, when compared with some other recent methods under the same assumptions, the CCL approach proves to be competitive.
Keywords: gene mapping; linkage disequilibrium; composite likelihood; conditional likelihood; ancestral recombination graph; importance sampling (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1298 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:7:y:2008:i:1:n:27
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1298
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().