Breast Cancer Diagnosis from Proteomic Mass Spectrometry Data: A Comparative Evaluation
Hand David J
Additional contact information
Hand David J: Imperial College, London
Statistical Applications in Genetics and Molecular Biology, 2008, vol. 7, issue 2, 23
Abstract:
The performance results of a wide range of different classifiers applied to proteomic mass spectra data, in a blind comparative assessment organised by Bart Mertens, are reviewed. The different approaches are summarised, issues of how to evaluate and compare the predictions are described, and the results of the different methods are examined. Although the different methods perform differently, their rank ordering varies according to how one measures performance, so that one cannot draw unequivocal conclusions about which is 'best.' Instead, it is clear that what matters is not the method by itself, but the interaction of method and user - the degree of sophistication of the user with a method. Nevertheless, such competitions do serve the useful role of setting (constantly improving) baselines against which new researchers can pit their wits and methods, as well as providing standards against which new methods should be assessed.
Keywords: proteomic mass spectra; classification; error rate; classifier performance; sensitivity; specificity (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1435 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:7:y:2008:i:2:n:15
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1435
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().