Univariate Shrinkage in the Cox Model for High Dimensional Data
Tibshirani Robert J.
Additional contact information
Tibshirani Robert J.: Stanford University
Statistical Applications in Genetics and Molecular Biology, 2009, vol. 8, issue 1, 20
Abstract:
We propose a method for prediction in Cox's proportional model, when the number of features (regressors), p, exceeds the number of observations, n. The method assumes that the features are independent in each risk set, so that the partial likelihood factors into a product. As such, it is analogous to univariate thresholding in linear regression and nearest shrunken centroids in classification. We call the procedure Cox univariate shrinkage and demonstrate its usefulness on real and simulated data. The method has the attractive property of being essentially univariate in its operation: the features are entered into the model based on the size of their Cox score statistics. We illustrate the new method on real and simulated data, and compare it to other proposed methods for survival prediction with a large number of predictors.
Keywords: proportional hazards model; survival data; lasso; high-dimensional (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1438 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:21
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1438
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().