The Robustness of the Higher-Order 2SLS and General k-Class Bias Approximations to Non-Normal Disturbances
Garry Phillips and
Gareth Liu-Evans ()
No E2011/20, Cardiff Economics Working Papers from Cardiff University, Cardiff Business School, Economics Section
Abstract:
In a seminal paper Nagar (1959) obtained first and second moment approximations for the k-class of estimators in a general static simultaneous equation model under the assumption that the structural disturbances were i.i.d and normally distributed. Later Mikhail (1972) obtained a higher-order bias approximation for 2SLS under the same assumptions as Nagar while Iglesias and Phillips (2010) obtained the higher order approximation for the general k-class of estimators. These approximations show that the higher order biases can be important especially in highly overidentified cases. In this paper we show that Mikhail.s higher order bias approximation for 2SLS continues to be valid under symmetric, but not necessarily normal, disturbances with an arbitrary degree of kurtosis but not when the disturbances are asymmetric. A modified approximation for the 2SLS bias is then obtained which includes the case of asymmetric disturbances. The results are then extended to the general k-class of estimators.
Pages: 28 pages
Date: 2011-08
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://carbsecon.com/wp/E2011_20.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cdf:wpaper:2011/20
Access Statistics for this paper
More papers in Cardiff Economics Working Papers from Cardiff University, Cardiff Business School, Economics Section Contact information at EDIRC.
Bibliographic data for series maintained by Yongdeng Xu ().