Achieving an 80% Carbon Free Electricity System in China by 2035
Nikit Abhyankar,
Jiang Lin,
Fredrich Kahrl,
Shengfei Yin,
Umed Paliwal,
Xu Liu,
Nina Khanna,
Amol A Phadke and
Qian Luo
Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series from Department of Agricultural & Resource Economics, UC Berkeley
Abstract:
Dramatic reductions in solar, wind, and battery storage costs create new opportunities to reduce emissions and costs in China’s electricity sector, beyond current policy goals. This study examines the cost, reliability, emissions, public health, and employment implications of increasing the share of non-fossil fuel (“carbon free”) electricity generation in China to 80% by 2035. The analysis uses state-of-the-art modeling with high resolution load, wind, and solar inputs. The study finds that achieving an 80% carbon free electricity system in China by 2035 could reduce wholesale electricity costs, relative to a current policy baseline, while maintaining high levels of reliability, reducing deaths from air pollution, and increasing employment. In our 80% scenario, wind and solar generation capacity reach 3 TW and battery storage capacity reaches 0.4 TW by 2035, implying a rapid scale up in these resources that will require changes in policy targets, markets and regulation, and land use policies.
Keywords: Environmental Sciences; Environmental Management; Affordable and Clean Energy; Energy Modelling; Energy management; Energy policy; Energy resources; Energy sustainability (search for similar items in EconPapers)
Date: 2022-10-01
New Economics Papers: this item is included in nep-ene and nep-env
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.escholarship.org/uc/item/9183b502.pdf;origin=repeccitec (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cdl:agrebk:qt9183b502
Access Statistics for this paper
More papers in Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series from Department of Agricultural & Resource Economics, UC Berkeley Contact information at EDIRC.
Bibliographic data for series maintained by Lisa Schiff ().