A Machine Vision Based Surveillance System For California Roads
J. Malik and
S. Russell
Institute of Transportation Studies, Research Reports, Working Papers, Proceedings from Institute of Transportation Studies, UC Berkeley
Abstract:
In this paper, the authors describe the successful combination of a low- level, vision-based surveillance system with a high-level, symbolic reasoner based on dynamic belief networks. This prototype system provides robust, high-level information about traffic scenes. The machine vision component of the system employs a correlation-based tracker and a physical motion model using a Kalman filter to extract vehicle trajectories over a sequence of traffic scene images. The symbolic reasoning component uses a dynamic belief network to make inferences about traffic events. In this paper, the authors discuss the key tasks of the vision and reasoning components as well as their integration into a working prototype.
Keywords: Computer vision; Image processing; Automobiles--Automatic control; Traffic surveillance; Incident detection; Automatic vehicle classification (search for similar items in EconPapers)
Date: 1995-01-01
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.escholarship.org/uc/item/31x0176f.pdf;origin=repeccitec (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cdl:itsrrp:qt31x0176f
Access Statistics for this paper
More papers in Institute of Transportation Studies, Research Reports, Working Papers, Proceedings from Institute of Transportation Studies, UC Berkeley Contact information at EDIRC.
Bibliographic data for series maintained by Lisa Schiff ().