Vehicle Detection by Sensor Network Nodes
Jiagen Ding,
Sing-Yiu Cheung,
Chin-woo Tan and
Pravin Varaiya
Institute of Transportation Studies, Research Reports, Working Papers, Proceedings from Institute of Transportation Studies, UC Berkeley
Abstract:
This report presents the algorithm development and experimental work of the sensor node signal processing for vehicle detection. The signals used for vehicle detection are acoustic and magnetic signals. The acoustic signals are characterized by short time FFT analysis and two acoustic vehicle detection algorithms are proposed: the Adaptive Threshold algorithm (ATA) and the Min-max algorithm (MMA). The ATA detects vehicle by searching for a sequence of 1's after slicing the acoustic energy curve using an adaptive threshold. The MMA detects vehicles by searching the local maximum in the acoustic energy curve. Real time tests and offline simulations demonstrate the effectiveness of the two algorithms. For magnetic signals, a simple threshold slicing algorithm is utilized and real time tests give good performance. Finally, FPGA implementation of ATA is also presented for power efficiency requirement and the implementation justifies the use of dedicated hardware for low power implementation.
Date: 2004-10-01
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.escholarship.org/uc/item/72b6f7gh.pdf;origin=repeccitec (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cdl:itsrrp:qt72b6f7gh
Access Statistics for this paper
More papers in Institute of Transportation Studies, Research Reports, Working Papers, Proceedings from Institute of Transportation Studies, UC Berkeley Contact information at EDIRC.
Bibliographic data for series maintained by Lisa Schiff ().