Design and Error Analysis of Accelerometer-Based Inertial Navigation Systems
Chin-Woo Tan and
Sungsu Park
Institute of Transportation Studies, Research Reports, Working Papers, Proceedings from Institute of Transportation Studies, UC Berkeley
Abstract:
We examine the feasibility of designing an accelerometer-based (or gyroscope-free) inertial navigation system that uses only accelerome-ters to compute the linear and angular motions of a rigid body. The accelerometer output equation is derived to relate the linear and an-gular motions of a rigid body relative to a fixed inertial frame. A suf-ficient condition is given to determine if a configuration of accelerom-eters is feasible. If the condition is satisfied, the angular and linear motions can be computed separately using two decoupled equations of an input-output dynamical system; a state equation for angular velocity and an output equation for linear acceleration. This simple computation scheme is derived from the corresponding dynamical sys-tem equations for a special cube configuration for which the angular acceleration is expressed as a linear combination of the accelerometer outputs. The effects of accelerometer location and orientation errors are analysed. Algorithms that identify and compensate these errors are developed. Keywords gyroscope-free, configuration of accelerometers, feasibility, input-output dynamical system realisation, error sensitivity analysis.
Date: 2002-06-01
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.escholarship.org/uc/item/9mc9q9p5.pdf;origin=repeccitec (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cdl:itsrrp:qt9mc9q9p5
Access Statistics for this paper
More papers in Institute of Transportation Studies, Research Reports, Working Papers, Proceedings from Institute of Transportation Studies, UC Berkeley Contact information at EDIRC.
Bibliographic data for series maintained by Lisa Schiff ().