EconPapers    
Economics at your fingertips  
 

Serie de Machine Learning Análisis de Componentes Principales (PCA)

Sergio Pernice

No 770, CEMA Working Papers: Serie Documentos de Trabajo. from Universidad del CEMA

Abstract: En este documento presentamos la técnica de Principal Component Analysis (PCA). Es parte de la serie de documentos sobre machine learning. Es parte del contenido del curso “Métodos de Machine Learning para Economistas” de la Maestría en Economía de la UCEMA.

Keywords: Principal component analysis; Análisis de componentes principales; aprendizaje no supervisado. (search for similar items in EconPapers)
Pages: 16 pages
Date: 2020-12
New Economics Papers: this item is included in nep-big and nep-cmp
References: Add references at CitEc
Citations:

Downloads: (external link)
https://ucema.edu.ar/publicaciones/download/documentos/770.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cem:doctra:770

Access Statistics for this paper

More papers in CEMA Working Papers: Serie Documentos de Trabajo. from Universidad del CEMA Contact information at EDIRC.
Bibliographic data for series maintained by Valeria Dowding ().

 
Page updated 2025-04-03
Handle: RePEc:cem:doctra:770