Serie de Machine Learning Análisis de Componentes Principales (PCA)
Sergio Pernice
No 770, CEMA Working Papers: Serie Documentos de Trabajo. from Universidad del CEMA
Abstract:
En este documento presentamos la técnica de Principal Component Analysis (PCA). Es parte de la serie de documentos sobre machine learning. Es parte del contenido del curso “Métodos de Machine Learning para Economistas” de la Maestría en Economía de la UCEMA.
Keywords: Principal component analysis; Análisis de componentes principales; aprendizaje no supervisado. (search for similar items in EconPapers)
Pages: 16 pages
Date: 2020-12
New Economics Papers: this item is included in nep-big and nep-cmp
References: Add references at CitEc
Citations:
Downloads: (external link)
https://ucema.edu.ar/publicaciones/download/documentos/770.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cem:doctra:770
Access Statistics for this paper
More papers in CEMA Working Papers: Serie Documentos de Trabajo. from Universidad del CEMA Contact information at EDIRC.
Bibliographic data for series maintained by Valeria Dowding ().