Forecasting Expected Shortfall with a Generalized Asymmetric Student-t Distribution
Dongming Zhu and
John Galbraith
CIRANO Working Papers from CIRANO
Abstract:
Financial returns typically display heavy tails and some skewness, and conditional variance models with these features often outperform more limited models. The difference in performance may be especially important in estimating quantities that depend on tail features, including risk measures such as the expected shortfall. Here, using a recent generalization of the asymmetric Student-t distribution to allow separate parameters to control skewness and the thickness of each tail, we fit daily financial returns and forecast expected shortfall for the S&P 500 index and a number of individual company stocks; the generalized distribution is used for the standardized innovations in a nonlinear, asymmetric GARCH-type model. The results provide empirical evidence for the usefulness of the generalized distribution in improving prediction of downside market risk of financial assets. De façon générale, les rendements financiers sont caractérisés par des queues épaisses et une certaine asymétrie. Ainsi, les modèles à variance conditionnelle dotés de ces caractéristiques donnent de meilleurs résultats que les modèles plus limités. La différence dans les résultats obtenus peut être particulièrement importante lorsqu'il s'agit d'évaluer des quantités qui dépendent des caractéristiques des queues, y compris les mesures du risque, tel que le manque à gagner prévu. Dans le cas actuel, en recourant à une généralisation récente de la distribution asymétrique suivant la loi t de Student, de sorte que des paramètres distincts limitent l'asymétrie et l'épaisseur de chaque queue, nous intégrons les rendements financiers quotidiens et estimons le manque à gagner prévu dans le cas de l'indice S&P 500 et de certaines actions de compagnies individuelles. La distribution généralisée est utilisée pour les innovations normalisées contenues dans un modèle asymétrique non linéaire de type GARCH. Les résultats démontrent de façon empirique l'utilité de la distribution généralisée pour améliorer les prévisions au sujet du risque de perte en cas de baisse du marché des actifs financiers.
Keywords: asymmetric distribution; expected shortfall; NGARCH model; distribution asymétrique; manque à gagner prévu; modèle NGARCH (Nonlinear Generalized AutoRegressive Conditional Heteroscedasticity) (search for similar items in EconPapers)
JEL-codes: C16 G10 (search for similar items in EconPapers)
Date: 2009-05-01
New Economics Papers: this item is included in nep-ecm, nep-for and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://cirano.qc.ca/files/publications/2009s-24.pdf
Related works:
Working Paper: FORECASTING EXPECTED SHORTFALL WITH A GENERALIZED ASYMMETRIC STUDENT-T DISTRIBUTION (2009) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cir:cirwor:2009s-24
Access Statistics for this paper
More papers in CIRANO Working Papers from CIRANO Contact information at EDIRC.
Bibliographic data for series maintained by Webmaster ().