EconPapers    
Economics at your fingertips  
 

Implementing a Hierarchical Deep Learning Approach for Simulating multilevel Auction Data

Igor Sadoune, Marcelin Joanis and Andrea Lodi

CIRANO Working Papers from CIRANO

Abstract: We present a deep learning solution to address the challenges of simulating realistic synthetic first-price sealed-bid auction data. The complexities encountered in this type of auction data include high-cardinality discrete feature spaces and a multilevel structure arising from multiple bids associated with a single auction instance. Our methodology combines deep generative modeling (DGM) with an artificial learner that predicts the conditional bid distribution based on auction characteristics, contributing to advancements in simulation-based research. This approach lays the groundwork for creating realistic auction environments suitable for agent-based learning and modeling applications. Our contribution is twofold: we introduce a comprehensive methodology for simulating multilevel discrete auction data, and we underscore the potential ofDGMas a powerful instrument for refining simulation techniques and fostering the development of economic models grounded in generative AI. Nous proposons une solution basée sur l'apprentissage profond pour simuler de manière réaliste des données d'enchères scellées. Les enjeux liés à ce type de données résident dans la gestion des variables discrètes de grande dimension et de la structure multiniveau liée à la présence de multiples offres pour une seule et même enchère. Notre approche intègre une modélisation générative profonde avec un système d'apprentissage artificiel, capable de prévoir la distribution des offres en fonction des propriétés de l'enchère. Cette stratégie constitue une base solide pour l'élaboration d'environnements d'enchères artificiels mais réalistes, adaptés à l'apprentissage et à la modélisation basés sur les agents. Notre contribution est double: nous introduisons une méthodologie complète pour simuler des données d'enchères discrètes à plusieurs niveaux, et nous mettons en lumière le potentiel de la modélisation générative profonde pour améliorer les techniques de simulation et promouvoir le développement de modèles économiques s'appuyant sur l'intelligence artificielle générative.

Keywords: simulation crafting; discrete deep generative modeling; multilevel discrete data; auction data; simulation; modélisation générative discrète et profonde; données discrètes multiniveaux; données d'enchères (search for similar items in EconPapers)
Date: 2023-10-02
New Economics Papers: this item is included in nep-big and nep-cmp
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://cirano.qc.ca/files/publications/2023s-23.pdf

Related works:
Working Paper: Implementing a Hierarchical Deep Learning Approach for Simulating Multi-Level Auction Data (2024) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cir:cirwor:2023s-23

Access Statistics for this paper

More papers in CIRANO Working Papers from CIRANO Contact information at EDIRC.
Bibliographic data for series maintained by Webmaster ().

 
Page updated 2025-03-19
Handle: RePEc:cir:cirwor:2023s-23