EconPapers    
Economics at your fingertips  
 

Efficient Estimation of Mortality Rates Using Micro and Macro Data

Derek S. Brown and Holger Sieg

No 2003-05, GSIA Working Papers from Carnegie Mellon University, Tepper School of Business

Abstract: Dynamic discrete choice models are a well established and widely used methodology to study behavior of older individuals. A key aspect of the analysis is to characterize life expectancy and how it is affected by behavioral choices. Researchers, therefore, need to estimate conditional mortality rates to implement these estimators. However, publicly available data sets which follow older individuals are often not large enough to get reliable estimates of mortality rates. Hence estimates of conditional mortality probabilities may not be informative since they have large estimated standard errors. Imbens and Lancaster (1994) have recently proposed a solution to this problem. The key idea is to obtain a more efficient estimator by combining panel data with aggregate data. Following this approach, we estimate qualitative response models of mortality rates by combining panel data from the Health and Retirement Survey with aggregate data from U.S. life tables. Our empirical results show that the Imbens and Lancaster estimator achieves significant efficiency gains over simpler estimators which ignore macro data. We also find that the estimated coefficients of the mortality model change significantly as we add additional orthogonality conditions based on life tables in estimation. These finding supports our conjecture that estimators based on simple qualitative response models may be subject to small sample bias. Finally, we illustrate that the improvements in estimation of mortality probabilities can have significant consequences for evaluating public policies. We consider simple life-cycle computations of health care expenditures associated with smoking and heavy drinking.

New Economics Papers: this item is included in nep-hea
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cmu:gsiawp:-1438339438

Ordering information: This working paper can be ordered from
https://student-3k.t ... /gsiadoc/GSIA_WP.asp

Access Statistics for this paper

More papers in GSIA Working Papers from Carnegie Mellon University, Tepper School of Business Tepper School of Business, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890.
Bibliographic data for series maintained by Steve Spear ().

 
Page updated 2025-04-05
Handle: RePEc:cmu:gsiawp:-1438339438