EconPapers    
Economics at your fingertips  
 

Minimizing functions with bounded variation of subgradients

Yu. Nesterov

No 2005079, LIDAM Discussion Papers CORE from Université catholique de Louvain, Center for Operations Research and Econometrics (CORE)

Abstract: In many applications it is possible to justify a reasonable bound for possible variation of subgradients of objective function rather than for their uniform magnitude. In this paper we develop a new class of efficient primal-dual subgradient schemes for such problem classes.

Keywords: convex optimization; subgradient methods; non-smooth optimization; blackbox methods; lower complexity bounds (search for similar items in EconPapers)
Date: 2005-11
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://sites.uclouvain.be/core/publications/coredp/coredp2005.html (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cor:louvco:2005079

Access Statistics for this paper

More papers in LIDAM Discussion Papers CORE from Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium). Contact information at EDIRC.
Bibliographic data for series maintained by Alain GILLIS ().

 
Page updated 2025-03-22
Handle: RePEc:cor:louvco:2005079