Minimizing functions with bounded variation of subgradients
Yu. Nesterov
No 2005079, LIDAM Discussion Papers CORE from Université catholique de Louvain, Center for Operations Research and Econometrics (CORE)
Abstract:
In many applications it is possible to justify a reasonable bound for possible variation of subgradients of objective function rather than for their uniform magnitude. In this paper we develop a new class of efficient primal-dual subgradient schemes for such problem classes.
Keywords: convex optimization; subgradient methods; non-smooth optimization; blackbox methods; lower complexity bounds (search for similar items in EconPapers)
Date: 2005-11
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://sites.uclouvain.be/core/publications/coredp/coredp2005.html (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cor:louvco:2005079
Access Statistics for this paper
More papers in LIDAM Discussion Papers CORE from Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium). Contact information at EDIRC.
Bibliographic data for series maintained by Alain GILLIS ().