Variational Inference for high dimensional structured factor copulas
Hoang Nguyen,
María Concepción Ausín Olivera and
Pedro Galeano San Miguel
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
Factor copula models have been recently proposed for describing the joint distribution of a large number of variables in terms of a few common latent factors. In this paper, we employ a Bayesian procedure to make fast inferences for multi-factor and structured factor copulas. To deal with the high dimensional structure, we apply a variational inference (VI) algorithm to estimate different specifications of factor copula models. Compared to the Markov chain Monte Carlo (MCMC) approach, the variational approximation is much faster and could handle a sizeable problem in a few seconds. Another issue of factor copula models is that the bivariate copula functions connecting the variables are unknown in high dimensions. We derive an automatic procedure to recover the hidden dependence structure. By taking advantage of the posterior modes of the latent variables, we select the bivariate copula functions based on minimizing the Bayesian information criterion (BIC). The simulation studies in different contexts show that the procedure of bivariate copula selection could be very accurate in comparison to the true generated copula model. We illustrate our proposed procedure with two high dimensional real data sets.
Keywords: Factor; copula; Model; selection; Variational; inference (search for similar items in EconPapers)
Date: 2018-10
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 566e00a7863b/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:27652
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().