EconPapers    
Economics at your fingertips  
 

A quantile based dimension reduction technique

María del Carmen Aguilera Morillo

DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de Estadística

Abstract: Partial least squares (PLS) is a dimensionality reduction technique used as an alternative to ordinary least squares (OLS) in situations where the data is colinear or high dimensional. Both PLS and OLS provide mean based estimates, which are extremely sensitive to the presence of outliers or heavy tailed distributions. In contrast, quantile regression is an alternative to OLS that computes robust quantile based estimates. In this work, the multivariate PLS is extended to the quantile regression framework, obtaining a theoretical formulation of the problem and a robust dimensionality reduction technique that we call fast partial quantile regression (fPQR), that provides quantilebased estimates. An efficient implementation of fPQR is also derived, and its performance is studied through simulation experiments and the chemometrics well known biscuit dough dataset, a real high dimensional example.

Keywords: Partial-Least-Squares; Quantile-Regression; Dimension-Reduction; Outliers; Robust (search for similar items in EconPapers)
Date: 2021-10-18
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 775e532ced98/content (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:33469

Access Statistics for this paper

More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de Estadística
Bibliographic data for series maintained by Ana Poveda ().

 
Page updated 2025-03-19
Handle: RePEc:cte:wsrepe:33469