Prescriptive selection of machine learning hyperparameters with applications in power markets: retailer's optimal trading
Alberto Corredera Barbado and
Carlos Ruiz Mora
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
We present a data-driven framework for optimal scenario selection in stochastic optimization with applications in power markets. The proposed methodology relies in the existence of auxiliary information and the use of machine learning techniques to narrow the set of possible realizations (scenarios) of the variables of interest. In particular, we implement a novel validation algorithm that allows optimizing each machine learning hyperparameter to further improve the prescriptive power of the resulting set of scenarios. Supervised machine learning techniques are examined, including kNN and decision trees, and the validation process is adapted to work with time-dependent datasets. Moreover, we extend the proposed methodology to work with unsupervised techniques with promising results. We test the proposed methodology in a realistic power market application: optimal trading strategy in forward and spot markets for an electricity retailer under uncertain spot prices. Results indicate that the retailer can greatly benefit from the proposed data-driven methodology and improve its market performance. Moreover, we perform an extensive set of numerical simulations to analyze under which conditions the best machine learning hyperparameters, in terms of prescriptive performance, differ from those that provide the best predictive accuracy.
Keywords: Or; in; energy; Data-Driven; Electricity; Retailer; Hyperparameter; Selection; Machine; Learning (search for similar items in EconPapers)
Date: 2022-10-03
New Economics Papers: this item is included in nep-big, nep-cmp, nep-ene, nep-ore and nep-reg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 6cfc305215e3/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:33693
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().