Data cloning for a threshold asymmetric stochastic volatility model
Juan Miguel Marín Díazaraque and
María Helena Lopes Moreira da Veiga
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
In this paper, we propose a new asymmetric stochastic volatility model whose asymmetry parameter can change depending on the intensity of the shock and is modeled as a threshold function whose threshold depends on past returns. We study the model in terms of leverage and propagation using a new concept that has recently appeared in the literature. We find that the new model can generate more leverage and propagation than a well-known asymmetric volatility model. We also propose to estimate the parameters of the model by cloning data. We compare the estimates in finite samples of data cloning and a Bayesian approach and find that data cloning is often more accurate. Data cloning is a general technique for computing maximum likelihood estimators and their asymptotic variances using a Markov chain Monte Carlo (MCMC) method. The empirical application shows that the new model often improves the fit compared to the benchmark model. Finally, the new proposal together with data cloning estimation often leads to more accurate 1-day and 10-day volatility forecasts, especially for return series with high volatility.
Keywords: Asymmetric; Stochastic; Volatility; Data; Cloning; Leverage; Effect; Propagation; Volatility; Forecasting (search for similar items in EconPapers)
Date: 2023-02-14
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 7748b0997d08/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:36569
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().