Adaptive posterior distributions for covariance matrix learning in Bayesian inversion problems for multioutput signals
Ernesto Angel Curbelo Benitez,
Luca Martino and
Fernando Llorente Fernandez
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
In this work, we propose an adaptive importance sampling (AIS) scheme for multivariate Bayesian inversion problems, which is based in two main ideas: the inference procedure is divided in two parts and the variables of interest are split in two blocks. We assume that the observations are generated from a complex multivariate non-linear function perturbed by correlated Gaussian noise. We estimate both the unknown parameters of the multivariate non-linear model and the covariance matrix of the noise. In the first part of the proposed inference scheme, a novel AIS technique called adaptive target AIS (ATAIS) is designed, which alternates iteratively between an IS technique over the parameters of the non-linear model and a frequentist approach for the covariance matrix of the noise. In the second part of the proposed inference scheme, a prior density over the covariance matrix is considered and the cloud of samples obtained by ATAIS are recycled and re-weighted for obtaining a complete Bayesian study over the model parameters and covariance matrix. Two numerical examples are presented that show the benefits of the proposed approach.
Keywords: Bayesian; Inversion; Importance; Sampling; Covariance; Matrix; Tempering; Sequence; Of; Posteriors (search for similar items in EconPapers)
Date: 2023-05-30
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 45b65b8d52f2/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:37391
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().