Bayesian estimation for the M/G/1 queue using a phase type approximation
María Concepción Ausín Olivera,
Michael Peter Wiper and
Rosa Elvira Lillo Rodríguez
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
This article deals with Bayesian inference and prediction for M/G/1 queueing systems. The general service time density is approximated with a class of Erlang mixtures which are phase type distributions. Given this phase type approximation, an explicit evaluation of measures such as the stationary queue size, waiting time and busy period distributions can be obtained. Given arrival and service data, a Bayesian procedure based on reversible jump Markov Chain Monte Carlo methods is proposed to estimate system parameters and predictive distributions.
Date: 2001-06
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... f017b99df51b/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws013019
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().