EconPapers    
Economics at your fingertips  
 

Restless bandit marginal productivity indices I: singleproject case and optimal control of a make-to-stock M/G/1 queue

José Niño Mora

DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de Estadística

Abstract: This paper develops a framework based on convex optimization and economic ideas to formulate and solve by an index policy the problem of optimal dynamic effort allocation to a generic discrete-state restless bandit (i.e. binary-action: work/rest) project, elucidating a host of issues raised by Whittle (1988)Žs seminal work on the topic. Our contributions include: (i) a unifying definition of a projectŽs marginal productivity index (MPI), characterizing optimal policies; (ii) a complete characterization of indexability (existence of the MPI) as satisfaction by the project of the law of diminishing returns (to effort); (iii) sufficient indexability conditions based on partial conservation laws (PCLs), extending previous results of the author from the finite to the countable state case; (iv) application to a semi-Markov project, including a new MPI for a mixed longrun-average (LRA)/ bias criterion, which exists in relevant queueing control models where the index proposed by Whittle (1988) does not; and (v) optimal MPI policies for service-controlled make-to-order (MTO) and make-to-stock (MTS) M/G/1 queues with convex back order and stock holding cost rates, under discounted and LRA criteria.

Date: 2004-02
References: Add references at CitEc
Citations:

Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 4fdad7cee4d6/content (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws040801

Access Statistics for this paper

More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de Estadística
Bibliographic data for series maintained by Ana Poveda ().

 
Page updated 2025-05-07
Handle: RePEc:cte:wsrepe:ws040801