Bayesian control of the number of servers in a GI/M/c queuing system
María Concepción Ausín Olivera,
Rosa Elvira Lillo Rodríguez and
Michael Peter Wiper
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
In this paper we consider the problem of designing a GI/M/c queueing system. Given arrival and service data, our objective is to choose the optimal number of servers so as to minimize an expected cost function which depends on quantities, such as the number of customers in the queue. A semiparametric approach based on Erlang mixture distributions is used to model the general interarrival time distribution. Given the sample data, Bayesian Markov chain Monte Carlo methods are used to estimate the system parameters and the predictive distributions of the usual performance measures. We can then use these estimates to minimize the steady-state expected total cost rate as a function of the control parameter c. We provide a numerical example based on real data obtained from a bank in Madrid.
Date: 2004-12
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 0efc94bc406a/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws046917
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().