Transient bayesian inference for short and long-tailed GI/G/1 queueing systems
María Concepción Ausín Olivera,
Michael Peter Wiper and
Rosa Elvira Lillo Rodríguez
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
In this paper, we describe how to make Bayesian inference for the transient behaviour and busy period in a single server system with general and unknown distribution for the service and interarrival time. The dense family of Coxian distributions is used for the service and arrival process to the system. This distribution model is reparametrized such that it is possible to define a non-informative prior which allows for the approximation of heavytailed distributions. Reversible jump Markov chain Monte Carlo methods are used to estimate the predictive distribution of the interarrival and service time. Our procedure for estimating the system measures is based in recent results for known parameters which are frequently implemented by using symbolical packages. Alternatively, we propose a simple numerical technique that can be performed for every MCMC iteration so that we can estimate interesting measures, such as the transient queue length distribution. We illustrate our approach with simulated and real queues.
Date: 2005-05
New Economics Papers: this item is included in nep-ecm
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... f208d0e3bf40/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws053504
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().