A two factor long memory stochastic volatility model
Helena Veiga
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
In this paper we fit the main features of financial returns by means of a two factor long memory stochastic volatility model (2FLMSV). Volatility, which is not observable, is explained by both a short-run and a long-run factor. The first factor follows a stationary AR(1) process whereas the second one, whose purpose is to fit the persistence of volatility observable in data, is a fractional integrated process as proposed by Breidt et al. (1998) and Harvey (1998). We show formally that this model (1) creates more kurtosis than the long memory stochastic volatility (LMSV) of Breidt et al. (1998) and Harvey (1998), (2) deals with volatility persistence and (3) produces small first order autocorrelations of squared observations. In the empirical analysis, we use the estimation procedure of Gallant and Tauchen (1996), the Efficient Method of Moments (EMM), and we provide evidence that our specification performs better than the LMSV model in capturing the empirical facts of data.
Date: 2006-02
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... af504b770838/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws061303
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().