Depth-based inference for functional data
Sara López Pintado
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
We propose robust inference tools for functional data based on the notion of depth for curves. We extend the ideas of trimmed regions, contours and central regions to functions and study their structural properties and asymptotic behavior. Next, we introduce a scale curve to describe dispersion in a sample of functions. The computational burden of these techniques is not heavy and so they are also adequate to analyze high-dimensional data. All these inferential methods are applied to different real data sets.
Date: 2006-05
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 599385342417/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws063113
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().