Forecasting from one day to one week ahead for the Spanish system operator
José Ramón Cancelo and
Rosmarie Grafe
Authors registered in the RePEc Author Service: Antoni Espasa
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
This paper discusses the building process and models used by Red Eléctrica de España (REE), the Spanish system operator, in short-term electricity load forecasting. REE's forecasting system consists of one daily model and 24 hourly models with a common structure. There are two types of forecasts of special interest to REE, several days ahead predictions for daily data and one day ahead hourly forecasts. Accordingly, forecast accuracy is assessed in terms of their errors. For doing so we analyze historical, real time forecasting errors for daily and hourly data for the year 2006, and report forecasting performance by day of the week, time of the year and type of day. Other aspects of the prediction problem, like the influence of the errors in predicting temperature on forecasting the load several days ahead, or the need for an adequate treatment of special days, are also investigated.
Keywords: Energy; forecasting; Hourly; and; daily; models; Time; series; Forecasting; practice (search for similar items in EconPapers)
Date: 2007-12
New Economics Papers: this item is included in nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... c81f367ff5e4/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws078418
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().